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Examples : Nanocrystals
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Applications : Fluorescent labels for biology, few-electron memories…

IBM research

M. Bruchez Jr. et al., Science 281, 2013 (1998) ; W. C. W. Chan and S. Nie, Science 281, 2016 (1998) 
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Examples : Nanowires

M. T. Björk et al., Appl. Phys. Lett. 80, 1058 (2002)

D. Wang et al., Appl. Phys. Lett. 83, 2432 (2003)

Applications : Small-size transistors, …
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Examples : InAs/GaAs QDs

Stransky-Krastanov growth of InAs on GaAs :

The InAs form pyramidal « droplets » on the GaAs surface. This transition from 
planar to 3D growth is driven by the lattice mismatch between InAs and GaAs : the 
bond length is indeed 6.69% larger in InAs than in GaAs.

Applications : Quantum dot lasers, …
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The k·p and effective mass approximations
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The limits of the k·p approximation

The k·p approximation is accurate in weakly confined nanostructures such as 
InAs/GaAs quantum dots and large nanocrystals.

However the k·p approximation suffers from known deficiencies :

It does not properly reproduce bulk bands at large k / high energy : 

As a consequence the k·p approximation fails to describe the electronic 
properties of nanostructures at high energy (e.g. highly confined structures 
such as small nanocrystals).

The k·p approximation can not handle atomic-like boundary conditions.

We need an atomistic method reproducing the bulk band structures
over a wide energy range to overcome these deficiencies

Si valence band structure
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We assume that the semiconductor crystal or nanostructure can be modeled by a 
one-particle hamiltonian :

where the effective potential veff(r) may be expanded as a sum of atomic 
contributions :

Ri being the atomic positions.

( ) ( ) ( ) ( )rrrrr εψψψ =+Δ− effv
m0

2

2

An effective single-particle hamiltonian

( ) ( )∑ −=
i

iieff vv Rrr
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Introduction

Write the wavefunctions as linear combination of atomic orbitals (LCAO) :

where ϕα(r − Ri) is an orbital of kind α centered on atom i with position Ri. For 
example,

– α = 1 ↔ 1s

– α = 2 ↔ 2s

– α = 3 ↔ 2px

– α = 4 ↔ 2py

– α = 5 ↔ 2pz

– …

Which orbitals to choose ?
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From the atom to the solid (I)

1 H

2 H

4 H
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From the atom to the solid (II)

N H

E

Most bonding

Most antibonding

εf

Solid
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Semiconductor band structures

GaAs : Direct bandgap material (the valence band maximum and conduction
band minimum lie at the same k point).

Si : Indirect bandgap material (the valence band maximum and conduction
band minima lie at different k points).
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Which orbitals to choose ? (I)

EE

1s
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4s

1s band
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Mostly 3s, 3p antibonding
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Si atom Bulk Si

Bandgap

sp3 bonding
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Which orbitals to choose ? (II)

Possible choices for Si :

sp3 tight-binding model : quite accurate for the valence bands, somewhat 
less for the conduction bands, especially at high energy.

sp3d5 tight-binding  model : accurate valence bands, pretty good conduction 
bands.

sp3d5s* tight-binding model : accurate valence and conduction bands.

Si 3s 3p

3d
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Application to nanocrystals and quantum dots (I)

Write the wavefunctions as linear combination of atomic orbitals (LCAO) :

where ϕα(r − Ri) is an orbital of type α centered on atom i with position Ri. 
Hence :
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Application to nanocrystals and quantum dots (II)

We then project onto |ϕβ(r − Rj)〉 :

where :

Hαα(Ri, Ri) is an « on-site » energy while Hαβ(Ri, Rj) is a « hopping » matrix 
element.
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Application to nanocrystals and quantum dots (III)

We then project onto |ϕβ(r − Rj)〉 :

We last define the following n x n matrices (n = N × norb) :

and the vector     with coordinates ciα. We thus end up with :
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The semi-empirical tight-binding method

What we need :

« Semi-empirical » tight-binding : 

Consider these matrix elements as adjustable parameters.

Fit them on the experimental or ab initio bulk band structures.

Use the same matrix elements in nanostructures (« transferabilty »).

Transferability assumes that the effective potential created by each atom is the 
same in bulk and nanostructures.
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Application to crystalline solids (I)

In a crystalline solid, any atomic position Ri can be split in two parts :

x
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z

a

Example : The Diamond/Zinc-Blende
crystal structure is a face-centered 
cubic (FCC) lattice with a two atom unit 
cell (nc = 2) :

– one at d1 = (0,0,0) [e.g. Ga].
– the other at d2 = (1,1,1) a/4 [e.g. As].
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Application to crystalline solids (II)

Bloch’s theorem : 

As a consequence,

However,
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Hence,

Since the LCAO expansion must be unique,

Finally,

Application to crystalline solids (III)
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Application to crystalline solids (IV)

Let :

We get :

We then project on
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Let us define :

We get :
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Application to crystalline solids (V)
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Application to crystalline solids (VI)

We last define the following nb x nb matrices (nb = ncnorb) :

and the vector        with coordinates bpα(nk). We thus end up with : 

We solve this generalized eigenvalue problem and get nb = ncnorb bands.
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Further simplifications…

What we need :

Hαα(Ri, Ri) is an « on-site » energy while Hαβ(Ri, Rj) is a « hopping » matrix 
element.

We can use symmetries and make further approximations to reduce the number of 
matrix elements to compute : 

Finite range tight-binding models.

Orthogonal/non-orthogonal tight-binding models.

Two/three centers tight-binding models.
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The use of symmetries (I)

These hamiltonian and overlap matrix elements are equal by symmetry…
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The use of symmetries (II)

These hamiltonian and overlap matrix elements are opposite by symmetry…
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The use of symmetries (III)

These hamiltonian and overlap matrix elements are zero by symmetry…
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Finite range tight-binding models

Atomic orbitals decay exponentially far enough from the nucleus :

As a consequence, the hamiltonian and overlap matrix elements decrease very 
fast with ⏐Ri − Rj⏐.

Assume zero hamiltonian and overlap matrix elements beyond first, second 
or third nearest neighbors.  
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Orthogonal tight-binding models (I)

The atomic orbitals may be split into a radial and an angular part :

Different orbitals on the same atom are orthogonal (because the angular parts 
are) :  

The Rα’s of the free atoms are neither the only possible nor the best choice for the 
radial parts. Slightly different sets of Rα’s can indeed yield reasonnable band 
structures. In particular, we may try to tune the Rα(r)’s so as to minimize the 
overlaps between neighboring orbitals while retaining their overall free atom-like 
shapes, thus achieving :

[Orthogonal tight-binding model]

( ) ( ) ( ) αββααβ δϕϕ =−−= iiiiS RrRrRR ,

( ) ( ) ( ) αββααβ δδϕϕ ijjijiS ≈−−= RrRrRR ,

( ) ( ) ( )

...,,

,

dps

mlYrR

harmonic Sphericalpart Radial

ϕθϕ
αααα ×=r
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Orthogonal tight-binding models (II)

Beware : negligible overlap matrix elements does not mean that neighboring 
orbitals do not interpenetrate !!

On the contrary, making the orbitals quasi-orthogonal add wiggles that usually 
increase the range of the model. 

( ) ( ) ( ) 0, ≈−−= jijiS RrRrRR βααβ ϕϕ

+ --
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Orthogonal tight-binding models (III)

We have to solve :

Assuming

We are thus back to a simpler standard eigenvalue problem :  
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Two and three center tight-binding models

Let :

Then,

Keep part or all k ≠ i and k ≠ j terms : « Three center tight-binding model ».

Only keep (most important) k = i or k = j terms : « Two center tight-binding 
model ».

( ) ( ) ( )
2

02
 and eff eff k k
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h v v v
m

= − Δ + = −∑r r r r R
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Two center tight-binding models

( ) ( ) ( ) ( ) ( )2 1
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2 1
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Spin-orbit coupling within tight-binding

Spin-orbit mainly couples the orbitals of each atom among themselves. We can 
indeed make the following on-site approximation :

where S is the electron spin and L is the orbital momentum operator on atom i.
As a consequence, a spin-augmented basis must be used with one⏐↑> and 
one⏐↓> orbital of each kind. In most cases, spin-orbit coupling is taken into 
account between p orbitals only, which is enough to split the valence bands :
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The semi-empirical tight-binding method

What we need :

« Semi-empirical » tight-binding : 

Consider these matrix elements as adjustable parameters.

Fit them on the experimental or ab initio bulk band structures.

Use the same matrix elements in nanostructures (« transferabilty »).

Transferability assumes that the effective potential created by each atom is the 
same in bulk and nanostructures.

( ) ( ) ( )
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Γ ΓX W L K X

-10

-5

0

5

10

E
n

er
g

y
 (

eV
)

TB sp3

ab initio

 Exp. TB 

CB effective mass 
m* 0.023 0.023 m0

VB Luttinger paremeters 

γ1 19.70 19.50 
γ2 8.40 8.42 

γ3 9.28 9.20 
 

InAs

Fitting tight-binding parameters (I)

Fit the tight-binding parameters onto selected experimental or « ab initio » band 
energies and effective masses.

38DSM/DRFMC/SP2M/L_Sim Hanoi, 23/12/2005 18:09:53
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CB effective mass 
m* 0.023 0.023 m0

VB Luttinger paremeters 

γ1 19.70 19.50 
γ2 8.40 8.42 

γ3 9.28 9.20 
 

InAs

Fitting tight-binding parameters (II)

Minimize the squared error with respect to the tight-binding parameters :

αnk and βi are weighting coefficients and k0 is an arbitrary wavevector (for 
consistency & overall weighting of the masses with respect to the band energies).
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Third nearest neighbors, three centers orthogonal sp3 tight-binding model for Si :

Example : Esx(220) = Hamiltonian matrix element between a s orbital at (0,0,0) and 
a px orbital at (2,2,0)a/4. Δ is the spin-orbit coupling parameter.

Atomic orbitals remain unknown !!

x

y

z

a

Fitting tight-binding parameters (III)

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000)

40DSM/DRFMC/SP2M/L_Sim Hanoi, 23/12/2005 18:09:53

Comparison between a sp3 and a sp3d5s* model for Si

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000)

Third nearest neighbors orthogonal sp3 model Nearest neighbors orthogonal sp3d5s* model

J. M. Jancu et al., Phys. Rev. B 57, 6493 (1998)

GW = « ab initio » method (no 
adjustable paremeters).

The sp3d5s* model provides a 
better description (especially on 
the conduction band side), but at 
a higher computational cost.
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Application to nanocrystals and quantum dots (I)

Write the wavefunctions as linear combination of atomic orbitals (LCAO) :

where ϕα(r − Ri) is an orbital of type α centered on atom i with position Ri. 
We get :
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Application to nanocrystals and quantum dots (II)

We then project onto |ϕβ(r − Rj)〉 :

We last define the following n x n matrices (n = N × norb) :

and the vector     with coordinates ciα. We thus end up with :
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Numerical methods

H and S are large n x n matrices (n = N × norb). It is not possible to solve this 
generalized eigenvalue problem using standard libraries (e.g., Lapack).

H and S are however sparse matrices : most of the elements are zero because 
atoms only interact with their nearest neighbors. The matrix-vector products (Hc
and Sc) can thus be implemented very efficiently : only the position and value of 
the non-zero elements of H and S need to be stored in memory.

A few wavefunctions and energies are then computed around the gap using an 
iterative diagonalization method : a random vector is updated step by step until it 
has become an eigenstate of H. Each step only requires one or more Hc / Sc
products (no explicit transformations on H and S) :

Lanczos,

Conjugate gradients,

Jacobi-Davidson…

10-50 eigenstates of H can be computed in few hours for ~ 1 000 000 atoms or 
more.

[ ]models binding-tight orthogonal for   IScScH ˆˆˆˆˆˆ == ε
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Nanocrystals
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J. Bleuse, CEA Grenoble

Applications : Fluorescent labels for biology, few-electron memories…

IBM research

M. Bruchez Jr. et al., Science 281, 2013 (1998) ; W. C. W. Chan and S. Nie, Science 281, 2016 (1998) 



45DSM/DRFMC/SP2M/L_Sim Hanoi, 23/12/2005 18:09:53

Application : Confinement in Si nanocrystals (I)

Spherical Si nanocrystals 
with diameter d

Cubic Si nanocrystals with 
side a and « effective » 
diameter d such that :

3
3

23

4
a

d
=⎟

⎠
⎞

⎜
⎝
⎛π

The dangling bonds at the surface of the nanocrystals are saturated with H atoms.

46DSM/DRFMC/SP2M/L_Sim Hanoi, 23/12/2005 18:09:53

Diameter (nm)

H
ig

he
st

 h
ol

e 
en

er
gy

(e
V

)

Application : Confinement in Si nanocrystals (II)

Lowest electron level |ψ(r)|2

Diameter (nm)

L
ow
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V
)

Third nearest neighbors
orthogonal sp3 model

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000)

Lowest 
electron level

Highest 
hole level

E

r
Bulk bandgap 
Eg = 1.17 eV

0

1.17 eV
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Application : Confinement in Si nanocrystals (III)

Comparison between a third nearest neighbors orthogonal sp3 tight-binding 
model, a nearest neighbors orthogonal sp3d5s* tight-binding model, the semi-
empirical pseudopotential (PP) method [the wavefunction is expanded in plane 
waves instead of atomic orbitals] and an ab initio method [the local density 
approximation (LDA), involving no « adjustable » parameters like semi-empirical 
methods].

( ) ( )
( ) eV Si bulk where

 Si bulk

17.1

0

=

−=Δ

g

ggg

E

EdEE
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Nanowires (I)

Vapor-Liquid-Solid (VLS) growth :

Substrate

t

Au droplet

In & As 
gazeous

precursors

InAs 
nanowire
growth

Switch to 
InP…

Then back to 
InAs…

M. T. Björk et al., Appl. Phys. Lett. 80, 1058 (2002)

« Nanowire 
heterostructure »
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Nanowires (II)

Applications (examples) :

Nanowire field effect transistor :

Detection of single molecules/viruses :

D. Wang et al., Appl. Phys. Lett. 83, 2432 (2003)

The current between the 
drain and source is controlled 
by the gate voltage.

The surface of the nanowire is capped 
with molecules that bind to specific targets 
(DNA, viruses). The conductance of the 
nanowire changes each time the target 
binds to the wire.
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Application : Nanowire heterostructures (I)

The GaAs shell move surface traps away from the InAs/GaAs active core…

Strained system : The interatomic distance is 6.69% larger in InAs than in 
GaAs. The thin InAs layer is thus comprimed by the GaAs core, but can (partly) 
relax strains at the surface of the nanowire.

GaAs

InAs

∅ 16 nm ∅ 16 + 4 nm

4 nm
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Application : Nanowire heterostructures (II)

The bandgap opens under compression and closes under tension :

Compression (gap ) Tension (gap )

Strain relaxation digs a well for 
the electrons close to the surface

Weak but homogeneous 
strain relaxation
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Strains in tight-binding

To account for strains, we need bond length dependent tight binding parameters.
Example for two center tight binding models (generalized Harrison’s law) :

where d0 is the equilibrium bond length and αssσ is an exponent (around 2).

( ) ( )
σα

σσ

ss

d

d
dVdV ssss ⎟

⎠
⎞

⎜
⎝
⎛= 0

0

d
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Application : Nanowire heterostructures (III)

H1

E1

Nearest
neighbors
sp3d5s* tight-
binding model
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InAs/GaAs dots (I)

Stransky-Krastanov growth :

GaAs

GaAs

InAs

GaAs

InAs

GaAs

InAs

GaAs

The bond length is 6.7% larger in InAs than in 
GaAs. The InAs layer is thus compressed by 
the thick GaAs substrate… 

InAs pyramids finally grow onto the thin InAs 
« wetting layer ». The free surfaces of the 
pyramids indeed help relaxing strains. 

The pyramids can last be embedded in a thick, 
overgrown GaAs layer.

Semiconductor structures can be grown layer 
by layer using « molecular beam epitaxy ».
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InAs/GaAs dots (II)

InAs has a lower bandgap energy (~0.5 eV) 
than GaAs (~1.5 eV). The electrons and 
holes are thus confined in the InAs 
« quantum dots ».

A
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20 nm

TEM   A. Ponchet CNRS (95)

Bandgap

E

Bulk GaAs Bulk InAs

CB

VB
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InAs/GaAs dots (III)

Very sharp emission from a single InAs quantum dot (QD).
Applications : Quantum dots lasers…

J.Y. Marzin et al., Phys. Rev. Lett. 73, 716 (1994)

1 ,34 1 ,36

E n e rg y  (e V )

L = 5 µm : 10000 QDs             L = 0.5 µm : 100 QDs            L ~ 50 nm : 1 QD   

L

etching
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Application : Wavefunction imaging (I)

The sample is cleaved (cut in two pieces along a crystallographic plane). The 
cleavage plane goes through some InAs quantum dots, that show on the surface 
of the sample.
The cleavage plane is then imaged with a scanning tunneling microscope (STM). 
The InAs dots appear as bright spots, that tend to align along columns.

InAs/GaAs quantum dots
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Application : Wavefunction imaging (II)

The current flowing through the tip 
is plotted as a function of tip 
position (at constant tip-sample 
distance). This roughly provides an 
image of the wavefunctions of the 
levels the electrons are tunneling
onto.

V = 0.69 V : The electrons can 
only tunnel onto the lowest level.

Lowest electron level |ψ(r)|2

Nearest neighbors orthogonal sp3d5s* model
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Application : Wavefunction imaging (III)

Lowest electron level |ψ(r)|2

Nearest neighbors orthogonal sp3d5s* model
Second electron level |ψ(r)|2

V = 0.82 V : The electrons can 
tunnel onto the first two levels.
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Application : Tunneling spectroscopy (I)

Eg+2Σ UΔVB+U

ΔCB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

tip substratenanocrystal

1Pe 6×
1Se 2×

1VB 4×

4×2VB
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Eg+2Σ UΔVB+U

ΔCB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (II)

tip substratenanocrystal

1Pe 6×
1Se 2×

1VB 4×

4×2VB
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Eg+2Σ UΔVB+U

ΔCB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (III)

+U

U : Addition energy

tip substratenanocrystal

1Pe 6×
1Se 2×

1VB 4×

4×2VB
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Eg+2Σ UΔVB+U

ΔCB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (IV)

tip substratenanocrystal

1Pe 6×
1Se 2×

1VB 4×

4×2VB
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Eg+2Σ UΔVB+U

ΔCB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (V)

tip substratenanocrystal

1Pe 6×
1Se 2×

1VB 4×

4×2VB
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Applications : Tunneling spectroscopy (VI)

Diameter 6.4 nm

Second nearest-neighbors orthogonal sp3 model
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Applications : Tunneling spectroscopy (VII)

The calculated bandgap
energies and electron levels 
splittings are in very good 
agreement with the experiment.

Controversy about the 
interpretation of ΔVB.

1Pe 6×

1Se 2×

1VB 4×
4×2VB

ΔCB

ΔVB

Eg
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Applications : Tunneling spectroscopy (VIII)

Density 3 e– @ V = 1 V

Density 3 h+ @ V = – 1 V

Diameter 6.4 nm

Nanocrystal

STM tip

Au substrate

Electrostatic potential bias V = 1 V

We have computed the full I(V)
curve using the so-called 
orthodox theory.
Electron-electron interactions 
were taken into account self-
consistently..
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Applications : Tunneling spectroscopy (IX)

Injection of both electrons and holes at high enough positive or negative bias.

Measurement of ΔVB practically impossible.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

V (V)

G
 =

 d
I/

d
V

 (
u

.a
.)

Theory

Experiment

Diameter 6.4 nm

1Se

1Pe + 1VB + ...

1VB

1,2VB + 1Se

2VB + 1Pe

Y. M. Niquet et al., Phys. Rev. B 64, 113305 (2001)

tip substratenanocrystal

1Pe 6×
1Se

1VB 4×

4×2VB

2×
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Comparison : k·p versus tight-binding

k·p and tight-binding are semi-empirical methods : they are based on a 
parametrization of the bulk band structure (through effective masses or tight-
binding parameters) and implicitely assume that the effective potential created by 
each atom is the same in bulk and nanostructures (transferability). This, of 
course, is an approximation that always break down in small enough systems.

Increasing at least linearly 
with the number of atoms

Continuum model : does not 
depend on the size of the 
system

Computational cost

Usually accurate even in 
highly confined systems 
(small nanocrystals).

Can handle atomic-like 
boundary conditions (e.g. 
surface reconstructions, …)

Accurate in weakly confined 
systems

Description of
nanostructures

Accurate throughout the 
whole first Brillouin zone

Accurate right around the 
conduction band minimum 
and valence band maximum

Description of bulk band 
structure

Tight-bindingk·p


